2 research outputs found

    Design Principles of 5G NR RoF-Based Fiber-Wireless Access Network

    Get PDF
    For today, much attention in the upcoming 5G New Radio (NR) mobile networks is paid to radically expanding the available spectral bands up to millimeter wavelengths (MMW). Following this tendency, currently, the local telecommunication commissions of various countries are proposing and harmonizing the plans of frequency allocation in MMW band, which will be reviewed this year at the World Radio Conference (WRC-2019). Another milestone of great importance is the development of access networks. Here, well-known radio-over-fiber (RoF) technology is considered as the most promising approach, which is implemented based on fiber-wireless (FiWi) architecture. Elaborating the direction, in this chapter we review the worldwide progress of RoF-architected 5G NR access networks and highlight our last simulation results on design and optimization of millimeter-photonic-based FiWi interface. All schemes are modeled using VPIphotonics Design Suite software tool. In the result of simulation experiments, optimal design principles of optical distribution network (ODN), fiber-wireless interface (FWI), and fiber-wireless fronthaul network (FWFN) as a whole have been proposed, described, and validated

    Design of Reconfigurable Multiple-Beam Array Feed Network Based on Millimeter-Wave Photonics Beamformers

    Get PDF
    In this chapter, elaborating the direction of designing photonics-based beamforming networks (BFN) for millimeter-wave (mmWave) antenna arrays, we review the worldwide progress referred to designing multiple-beam photonics BFN and highlight our last simulation results on design and optimization of millimeter-photonics-based matrix beamformers. In particular, we review the specialties of mmWave photonics technique in 5G mobile networks of Radio-over-Fiber (RoF) technology based on fiber-wireless architecture. In addition, the theoretical background of array antenna multiple-beam steering using ideal models of matrix-based phase shifters and time delay lines is presented including a general analysis of radiation pattern sensitivity to compare updated photonics beamforming networks produced on phase shifter or true-time delay approach. The principles and ways to optimized photonics BFN design are discussed based on the study of photonics BFN scheme including integrated 8×8 optical Butler matrix (OBM). All schemes are modeled using VPIphotonics Design Suite and MATLAB software tools. In the result of simulation experiments, the outcome is obtained that both the integrated optical Butler matrix itself and the BFN based on it possess an acceptable quality of beams formation in a particular 5G pico-cell
    corecore